A multi-fidelity active learning method for global design optimization problems with noisy evaluations

نویسندگان

چکیده

Abstract A multi-fidelity (MF) active learning method is presented for design optimization problems characterized by noisy evaluations of the performance metrics. Namely, a generalized MF surrogate model used design-space exploration, exploiting an arbitrary number hierarchical fidelity levels, i.e., coming from different models, solvers, or discretizations, accuracy. The intended to accurately predict while reducing computational effort required simulation-driven (SDD) achieve global optimum. overall prediction evaluated as low-fidelity trained corrected with surrogates errors between consecutive levels. Surrogates are based on stochastic radial basis functions (SRBF) least squares regression and in-the-loop hyperparameters deal training data. adaptively queries new data, selecting both points level via approach. This lower confidence bounding method, which combines associated uncertainty select most promising regions. levels selected considering benefit-cost ratio their use in training. method’s assessed discussed using four analytical tests three SDD fluid dynamics simulations, namely shape NACA hydrofoil, DTMB 5415 destroyer, roll-on/roll-off passenger ferry. Fidelity provided adaptive grid refinement multi-grid resolution approaches. Under assumption limited budget function evaluations, proposed shows better comparison high-fidelity only.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Optimization Method for Design Problems

Article history: Received: 13.2.2015. Received in revised form: 24.3.2015. Accepted: 27.3.2015. In structural design optimization method, numerical techniques are increasingly used. In typical structural optimization problems there may be many locally minimum configurations. For that reason, the application of a global method, which may escape from the locally minimum points, remains essential....

متن کامل

Multi-Fidelity Multi-Objective Efficient Global Optimization Applied to Airfoil Design Problems

In this study, efficient global optimization (EGO) with a multi-fidelity hybrid surrogate model for multi-objective optimization is proposed to solve multi-objective real-world design problems. In the proposed approach, a design exploration is carried out assisted by surrogate models, which are constructed by adding a local deviation estimated by the kriging method and a global model approximat...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

A global optimization method for packing problems

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opin...

متن کامل

A Direct Search Algorithm for Optimization with Noisy Function Evaluations

We consider the unconstrained optimization of a function when each function evaluation is subject to a random noise. We assume that there is some control over the variance of the noise term, in the sense that additional computational effort will reduce the amount of noise. This situation may occur when function evaluations involve simulation or the approximate solution of a numerical problem. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Engineering With Computers

سال: 2022

ISSN: ['0177-0667', '1435-5663']

DOI: https://doi.org/10.1007/s00366-022-01728-0